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The problem of viscous fingering in a Hele-Shaw cell with moving contact lines is 
considered. In  contrast to the usual situation where the displaced fluid coats the solid 
surface in the form of thin films, here, both the displacing and the displaced fluids 
make direct contact with the solid. The principal differences between these two 
situations are in the ranges of attainable values of the gapwise component of the 
interfacial curvature (the component due to the bending of the fluid interface across 
the small gap of the Hele-Shaw cell), and in the introduction of two additional 
parameters for the case with moving contact lines. These parameters are the receding 
contact angle, and €he sensivity of the dynamic angle to the speed of the contact line. 
Our objective is the prediction of the shape and widths of the fingers in the limit of 
small capillary number, Uplcr. Here, U denotes the finger speed, p denotes the 
dynamic viscosity of the more viscous displaced fluid, and B denotes the surface 
tension of the fluid interface. As might be expected, there are similarities and 
differences between the two problems. Despite the fact that different equations arise, 
we find that they can be analysed using the techniques introduced by McLean & 
Saffman and Vanden-Broeck for the thin-film case. The nature of the multiplicity of 
solutions also appears to be similar for the two problems. Our results indicate that 
when contact lines are present, the finger shapes are sensitive to the value of the 
contact angle only in the vicinity of its nose, reminiscent of experiments where 
bubbles or wires are placed a t  the nose of viscous fingers when thin films are present. 
On the other hand, in the present problem a t  least two distinct velocity scales emerge 
with well-defined asymptotic limits, each of these two cases being distinguished by 
the relative importance played by the two components of the curvature of the fluid 
interface. It is found that the widths of fingers can be significantly smaller than half 
the width of the cell. 

1. Introduction 
The principal objective of this work is to provide a better understanding of 

immiscible fluid displacement at relatively slow speeds through a narrow gap formed 
between two solid surfaces. The essential characteristic is the small size of the gap, 
b,  compared to the extent of the surfaces, 2W, which allows a simplification of the 
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FIGURE 1. Fluid A (shaded area) displacing fluid B (unshaded area) from a gap formed between two 
rectangular solid plates. (a) Plan view. (b )  Side view along CD direction for the case where only fluid 
B contacts the solid. ( e )  Side view along CD direction for the case when both fluids A and B contact 
the solid, where (i) ,  (ii),  and (iii) denote three possible configurations of the fluid interface. 

equations and boundary conditions governing the dynamics of immiscible fluids. The 
use of the ratio of lengthscales in this manner is by no means new. There have been 
numerous studies over the past thirty years with the same objective, a substantial 
portion of these concerned with the problem of a less viscous fluid displacing a more 
viscous immiscible fluid in a Hele-Shaw cell. However, almost all have been 
restricted to materials in which only the more viscous fluid makes contact with the 
solid surfaces. 

Figure 1 illustrates the central difference between the two situations where only 
one fluid and both fluids contact the solid surface. Here, fluid A is displacing fluid B 
through a gap formed between two parallel solid surfaces, where b/  W + 1, i.e. a Hele- 
Shaw cell (refer to figure l a ) .  A cross-sectional view along the cut C-D for the two 
configurations of concern is given in figure l ( b )  and l ( c ) .  When only one fluid 
contacts the surface (figure 1 b ) ,  in this case fluid B, a t  least a film of this fluid must 
be present on the entire solid surface ; its thickness depends on the speed a t  which the 
fluid interface moves through the cell (Bretherton 1961; Tabeling, Zocchi & 
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Libchaber 1987; Reinelt & Saffman 1985; Reinelt 1 9 8 7 ~ ) .  For this case, the fluid 
interface always appears to be bellowing into the fluid being displaced. Under 
conditions of small capillary number, Up/u, i.e. values less than say 0.01, the shape 
of the fluid interface from this perspective is approximately that of an arc of a circle 
with radius slightly smaller than +b. Here, ,u denotes the viscosity of fluid B, r~ denotes 
the surface tension of the fluid interface, and Udenotes the characteristic speed of the 
interface. However, when a moving contact line is present under similar conditions, 
the radius of the almost circular fluid interface may vary between - 00 and -$b, or, 
$b and 03, the negative vaiues reflecting the fact that the fluid interface may bellow 
into fluid A even though fluid B is being displaced (refer to figure l c ) .  

One might anticipate that the situation depicted in figure l ( c )  would be more 
difficult to analyse than that depicted in figure 1 (b ) ,  owing to the presence of moving 
contact lines. When moving contact lines are present, the hydrodynamic model of 
the fluids is not completely known (refer to Dussan V. 1979 for more details). The 
situation in figure 1 (b )  is free of this difficulty. However, by restricting our attention 
to relatively small capillary numbers, thus enabling us to take advantage of the 
progress made over the last decade in modelling moving contact line problems. It 
turns out that the resulting boundary-value problem with moving contact lines is 
rather straightforward to analyse. Demonstrating this point is one of the objectives 
of this study. This will be accomplished by examining the dynamics of a viscous 
finger moving through a Hele-Shaw cell. 

Saffman & Taylor (1958) were the first to study the steady viscous fingering 
problem in a Hele-Shaw cell. Our attention is restricted to the case of a viscous liquid 
being displaced by a finger of gas in a horizontal cell. Saffman & Taylor used a small 
aspect ratio, b / W ,  to greatly simplify the governing equation and boundary 
conditions. For the governing equations, they assumed 

v . u = o ,  
where u denotes the velocity averaged across the gap, and p denotes the pressure. 
The conditions a t  the boundary of the finger, i.e. the fluid interface, were assumed 
to be 

u * r i = o ,  (1.3) 

2 
b 

p = -u-, 

where ri denotes the unit normal to the line representing the location of the boundary 
of the finger in this two-dimensional description of the system. The first expression 
assumes that the gas completely expels the liquid, even though thin films were 
always present in the solid surfaces in their experiments. The second expression is a 
consequence of assuming that the pressure of the liquid a t  the interface obeys the 
same condition as under static conditions. This implies that the pressure equals 
r ( l /R l+ l /R2) ,  where R, and R, denote the principal radii of curvature of the 
interface ; here, R, is associated with the gapwise component of the interfacial 
curvature, while R, is primarily associated with the curvature of the line representing 
the location of the boundary of the finger, i.e. the spanwise component of the 
interfacial curvature. For a small aspect ratio, Saffman & Taylor approximated 1/R, 
with 2 /b ,  and further assumed 1/R, 4 2/b.  Using these equations and boundary 
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conditions, Saffman & Taylor were able to obtain an analytic expression for the 
shape of the finger, parametrized in terms of its upstream width, 2AW. However, no 
expression appeared from which A could be determined. Experimentally, they 
measured the shape of a finger moving in the cell over a range of speeds. They found 
that the finger width varied inversely with speed, asymptoting to a value of gW at 
fast speeds, to within their experimental error. They also found that the shape of the 
finger predicted by their theory agrees very well with their experimental 
measurements when A equals t ;  however, the larger the value of A - t ,  the greater the 
discrepancy between experiment and theory. Since this discrepancy is characterized 
by the theoretically determined finger having too broad a nose, they speculated that 
the pressure, instead of being constant, must increase along the interface moving 
away from the nose. They further speculated that the variation in pressure along the 
finger could only be attributed to surface tension. They cited as possible causes a 
varying non-zero contact angle, a non-negligible contribution from l/R2, or a 
‘dynamic ’ surface-tension effect (the surface tension of a newly formed surface may 
change as the surface ages). However, they were unable to provide a physical 
explanation for A ++ at fast finger speeds. 

The problem was reconsidered in 1981 by McLean & Saffman. They modified the 
boundary-value problem of Saffman & Taylor by including the term r / E z  in the 
pressure boundary condition, which resolved many of the issues (although, as 
pointed out by Park & Homsey (1984), they neglected a higher-order correction to 
l /Rl).  They found excellent agreement between their predicted and the ex- 
perimentally measured finger shapes only if the value of A was chosen to match that 
of the experiment. Their analysis also determined a dependence of A on a 
dimensionless finger speed, (pU/u)  WZ/b2, with the property that A ++ for large finger 
speeds. However, the theory significantly under predicted A ,  for a given value of 
(,uU/u) W/b2,  when compared with experimental data, that is to say, ‘significant ’ 
when considering the degree of agreement between theory and experiment in the 
finger shapes. Romero (1981) showed that the solution of McLean & Saffman is not 
unique by finding two additional sets of finger shapes over a range of finger speeds. 
He further investigated the effect of incorporating a variation in the gapwise 
curvature, 2 / b ,  of the form cU,,, where c is a constant and U,, denotes the local speed 
of propagation of the finger as viewed from a frame of reference at rest with respect 
to the solid surfaces. However, Romero found that it was necessary to include u/R 
in order to get isolated sets of solutions. When he set u / R  equal to zero while retain- 
ing cUn, he obtained a continuous spectrum of solutions, a situation similar to that 
encountered by Saffman & Taylor. Vanden-Broeck (1983) provided evidence that the 
three isolated sets of solutions thus far identified are members of a denumerable 
infinite set. Work by Kessler & Levine (1985) and Bensimon (1986) indicated that the 
solution identified by McLean & Saffman is in fact the only stable solution, at least 
for modest values of (pU/u)W2/b2 .  This was further supported by Tanveer & 
Saffman (1987), who examined the stability of the closely related problem of a bubble 
moving in a Hele-Shaw cell. 

One of the remaining unresolved issues associated with the boundary-value 
problem identified by McLean & Saffman was the accuracy of its prediction of A. This 
point has been further accentuated by the data of Tabeling & Libchaber (1986) and 
Tabeling et al. (1987), obtained from experiments performed with Hele-Shaw cells 
having different aspect ratios. They found that h depends on b2/W as well as on 
(pU/n)  Wz/b2,  and that +does not represent a lower bound for A. The boundary-value 
problem identified by McLean & Saffman does not have either of these characteristics. 
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It has been found that these issues are resolved by including further influences of the 
thin films on the solid surfaces. Schwartz & DeGregoria (1987) include the presence 
of the thin films in (1.4), and make better predictions of A, although somewhat higher 
than those measured experimentally. Reinelt (1987 b)  includes the effect of the thin 
films on both (1.3) and (1.4), and makes fairly good predictions of A. There are 
reasons to believe that the deviation of his theoretical results from the experimental 
data a t  large values of ( p U / g )  W/b2 is a consequence of the analysis being valid only 
to O(b/W), as b/W+O. Thus, it appears that the physics, at least from a modelling 
perspective, is now well-understood. 

Considering the nature of our study, it is appropriate to cite the unusual 
experimental observations of Kopf-Sill & Homsy (1987, 1988), which consist of very 
slow moving bubbles, and very narrow viscous fingers, both in Hele-Shaw cells. 
Recently, Saffman & Tanveer (1989) have speculated about their origins. Based upon 
an analysis that models the presence of thin films, they concluded that another 
mechanism must be responsible for such small bubble speeds. They proceed to show 
that such small speeds are plausible if, in fact, the gas makes direct contact with the 
solid surfaces, i.e. moving contact lines are present. Since they had no knowledge 
about the properties of the dynamic contact angle for the particular system of 
concern, they could not be more definitive. They also conjecture that this may be the 
explanation for the observed narrow viscous fingers. 

The organization of the paper is as follows. In $2 the formulation of the problem 
is presented. We begin by identifying the scales associated with the inner region, the 
region in the immediate vicinity of the fluid interface, and the outer region, the region 
where most of the viscous fluid is present, away from the fluid interface, where to 
lowest order (1.1) and (1.2) are appropriate. There are aspects of our presentation 
which are similar to that of Park & Homsy (1984) and Reinelt (1987 a), who examine 
the inner region when thin films are present. However, we do not restrict ourselves 
to an almost straight fluid interface as do Park & Homsy, and our scaling of the 
velocity components in the inner region differs from that of Reinelt. Two specific 
problems are identified, each having the characteristic that both p U / a  and b/W 
approach zero. In $2.1, the fast speed viscous fingering problem is formulated, 
defined by holding the parameter (@/a) W/b fixed, as b/W+O. In $2.2, the slow 
speed problem is formulated, defined by holding the parameter (,uU/u) W/b2 fixed, 
as b/ W + 0. In both cases, the analyses of the inner regions are used to generate two 
boundary conditions for the equations governing the dynamics of the viscous liquid 
in the outer region. One of the boundary conditions is (1.3), which is not an 
approximation when moving contact lines are present. The other boundary condition 
is similar to the more general version of (1.4), suggested by Saffman & Taylor, 
containing a term like that introduced by Romero. However, in our case, we can 
identify the term with a physical property of the system, the contact angle, a 
parameterization consistent with the present understanding of moving contact line 
problems. Our solution procedure for both problems, which closely follows those of 
McLean & Saffman and Vanden-Broeck, is presented in $3. The results appear in $4, 
and the discussion and conclusions are presented in $5. 

2. Formulation 
In what follows, the relevant scales and dimensionless equations for both the inner 

and outer regions are presented. The goal is to obtain a boundary-value problem 
whose solution describes the shape of the moving contact line. 
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FIGURE 2. A finger of air penetrating a viscous liquid. The inner and outer regions are indicated. 
The origin for the coordinate system, used to describe the motion of the liquid in the outer region, 
is located at the nose of the finger. The directions of the 2- and y-axes are indicated. 

The plane view of a typical finger is given in figure 2. In formulating the problem, 
the frame of reference is assumed to be at  rest with respect to the finger. The origin 
of the coordinate system for the outer region is fixed at the nose of the finger, located 
at  the centre of the Hele-Shaw cell. The x-axis points in the direction of flow, and the 
y-axis lies tangent to the solid surfaces and perpendicular to the x-axis. Thus, the cell 
occupies the domain { - co < x < + co, - W < y < W ,  -ib < z < &I. As is assumed 
in other studies, the dynamics of the less viscous fluid, the fluid within the finger, can 
be neglected. In the outer region, the pressure balances viscous forces induced by 
velocity variations across the narrow gap of the cell. The dependent and independent 
variables are denoted by p,uUW/b2, U ,  Vy U,  bU/W, zW, gW, and d, U being the 
finger speed. Here, P denotes the pressure, (Vz, Vv, c) denotes the velocity 
components, and the overbar denotes variables made dimensionless with the scales 
appropriate for the outer region. Upon substituting the above into the Navier-Stokes 
equation, the following dimensionless groups arise : the Reynolds number, pUW/y, 
denoted by Re; a small parameter, b/W, denoted by E ;  and pgW/pU,  where g denotes 
the gravitational constant. Since the dynamics of the fluid in the outer region is well- 
known, we only explicitly state the boundary conditions peculiar to the fingering 
problem : 

P -  ( - 6 h ( 2 - + ) - 1 ) 9  asz+co,  
v--* x asz+-co, 

t = O  a tg=&+1,  

where 2AW denotes the finger width, P is the velocity vector, and the circumflex 
denotes a unit vector. 

For the purposes of analysing the inner region, the above defined (2, y, 2)- 

coordinate system is not optimal. Instead, a different coordinate system is developed 
based upon the contact line shape. The new (X, s, x )  orthogonal coordinate system is 
related to the (x, y, z )  system as shown in figure 3, where the variable z is defined as 
in the outer region. Note that only half of the finger, where y > 0, is considered due 
to the symmetric finger shape. In the inner region, surface tension forces dominate 
over viscous forces, and the flow field is strongly three-dimensional. Since the no-slip 
boundary condition is satisfied in the inner region at the top and bottom plates, the 
velocity components in the X and s directions scale with U. There is no fluid leakage 

- 
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FIGURE 3. Relationship of the coordinate system used in the inner region to the coordinate system 
used in the outer region. The plan view of the contact-line viscous finger is shown for y > 0. The 
location of the contact line is given by the parameterization x = f(s), y = g(s) in the X - s - z  inner- 
coordinate system. The z-direction is upward and perpendicular to the figure in the outer region. 

into the finger at  the contact line, and thus the velocity component in the z-direction 
also scales with U. The variables X and z scale with b,  while s scales with W .  The 
interface parameterization is given by X = ~ ( s ,  2). An important feature of the inner 
region is that the pressure scales with the surface tension, i.e. a/b. All variables made 
dimensionless using these scales are denoted with a tilde, and as before, unit vectors 
are denoted with a circumflex. Thus, the Navier-Stokes equation and continuity 
equation in dimensionless form are : 

where 

Here, the parameter Cu denotes the capillary number, pU/a ,  introduced in $1,  and 
Bd is the Bond number, pgWl /a ;  the angle Q, is defined in figure 3,and l/fi shall be 

3 FLM 221 
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referred to as the spanwise component of the interfacial curvature. The no-slip 
condition on the upper and lower plates is given by: 

Px = -cos@(s), = sin@(s), = o at Z" = &+. 

The kinematic boundary condition a t  the fluid interface is given by: 

where the contact angle, 0, is assumed to have a linear dependence on contact line 
speed ; i.e. dQ/dU is constant, 

(2.ib) 
dO 
d U  

0 = @,-pcos@, p = -u, 



Two-phase $ow with a moving contact line 61 

Moving dontact line 

4 
I 

Normal contact line speed, U. (2 

FIGURE 4. The contact angle. (a) Cross-sectional view of Hele-Shaw cell in the direction A,,, 
perpendicular to the contact line. The contact line and contact angle, 8, are shown. (b) The 
dependence of contact angle on speed, V. ( -A,,). The contact line is static when @ E [ @ ~ , @ ~ ] .  

w 

where the local speed of the contact line is given by Ucos @ (refer to figure 4).t  For 
the fingering problem, a receding contact line is always present. The two parameters 
in (2.lb) reflect this fact. The first parameter is OR, the receding contact angle, 
defined to be the smallest static contact angle. Since the speed of the contact line 
approaches zero as @ + @, then 8 3 0, as s -+ CO. The second parameter is 8, which 
incorporates the sensitivity of the contact angle to the speed of the contact line, and 
affects the magnitude of the angle variation along the contact line. Since the speed 
of the contact line is - U at s = 0, it is evident from physical considerations that @ 
must be less than 8,. However, it  is anticipated that there may be some critical 
value of close to 8, above whioh there is a propensity for a thin film to form, and 
the contact line solution is not physically observed, The solution to this transitional 
problem is &s of yet unsolved. 

As stated in 8 1, the scope of the investigation presented in this paper is limited to 
situations characterized by the asymptotic limits E + 0 and Ca + 0. Two cases will be 
pursued: Ca/c, 8, Re, Bd held fixed as c+O;  and Ca/ca, pis, Re, 3 d  held fixed as 

t It is known that the usual hydrodynamic assumptions give rise to a singularity at  the moving 
contaot line. In an asymptotic solution, the singularity appears in the expansion of the pressure at  
O(Ca), aa Ca+ 0. Since we do not malyse in the two specifio problems defined below (characterized 
by holding the parameter Ca/e or Ca/ep fixed as B approaches zero) beyond O(1) or O(e), 
respectively, we need not specify any additional information concerning the physics of the 
dynamics of the fluids in the immediate vicinity of the contaot line (Ngan & Dussan V. 1989). 

3-2 
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e --z 0. These will be referred to as C, and C, problems, respectively, where C, = Ca/e 
and C, = Ca/ez. The ratio Ca/E naturally arises in relating the inner and outer 
pressure scales, since the inner pressure is scaled with the surface tension and the 
outer pressure is scaled with the viscous forces. These problems can be thought of as 
representing two different velocity scales. The C, problem has the velocity scale 
given by uelp, while the C, problem has a velocity scale given by uE2/,u. Thus, the C, 
problem describes fingers moving at a faster speed relative to the C, problem. This 
point of view will be further exploited in 95. There, advantage will be taken of the 
equivalence of P/C, and PlsC, (alternatively equal to (dB/dU) cre/p), and the fact 
that they depend only upon size of the cell and the material properties of the system. 
This enables the behaviour of the same material system to be investigated from the 
perspective of these two different velocity scales. 

For each of these problems, surface tension forces dominate viscous forces at  the 
fluid interface ; however, the surface tension forces are more important in the lowest- 
order C, problem than in the lowest-order C, problem. This difference in surface 
tension forces is manifested in the way that the spanwise and gapwise variations in 
the interfacial curvature affect each solution. In the C, problem, /? is held fixed in the 
asymptotic limit and thus the contact angle variations along the contact line can be 
relatively large, inducing large variations in the gapwise interfacial curvature. This 
means that contact angle variations enter the lowest-order boundary-value problem ; 
the spanwise interfacial curvature enters in higher-order corrections to the contact 
line shape. On the other hand, in the C, problem it is required that P / s  is held fixed. 
Thus, the spanwise and gapwise variations in the curvature along the contact line 
both play a significant role in determining its shape; both enter the lowest-order 
boundary-value problem to determine the contact line shape. 

2.1. Gale heldJixed as e+O 

The dimensionless dependent variables defined in the outer region are expanded as : 

- E ( X ;  C1,P, O,, Re, Bd) + s z ( X ;  C1,/3, OR, Re, Bd) + . , . as s 4 0, 

where T denotes either P or V, and x is the position vector. Using this expansion, 
the lowest-order outer problem is characterized by Hele-Shaw flow : 

The dimensionless dependent variables defined in the inner region are expanded in 
e as: 

p -  ~(2;C1,P,0R,Re,Bd)+e~(2;C,,P,0R,Re,Bd)+ . . .  ase-tO, 
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denotes p ,  P, or f and X is the vector of inner spatial coordinates. Using this where 
exp.ansion, the lowest order defined in the inner region is: 

(2.12) 

(2.14) 

Integrating (2.14) (noting that (2.2) and (2.3) imply that F can at  most depend on 
s), and using the contact angle condition (2.10), the solution for the lowest-order 
inner region pressure is: - 

Po = -2cos(8,-pcos@,) vx,z 
Note that the angle djo is a function of a, yet to be determined. The remaining 
equations, (2.4)-(2.8), (2.11) and (2.13), indicate that:  

where the integral gives the speed averaged across the gap. Matching the inner and 
outer regions thus leads to the following boundary-value problem : 

(2.15a) 

t It should be noted that @,, denotes the lowest-order location of the contact line. The 
coordinates system is based on this lowest-order shape ; thus, there are no higher-order corrections 
to boundary conditions (2.7) and (2.9). 
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(2.15b) 

V$o - Acl0 = 0 at z =&(q), ( 2 . 1 5 ~ )  

(2.15d) 

(2.15e) 

In ( 2 . 1 5 ~ )  and (2.15d), the shape of the contact line, to be determined as part of the 
solution, is parameterized as Z = L@). Note that the curve also represents the shape 
of the finger in the Z =  0 plane, since the difference between that and the moving 
contact line is of O(s) .  

2.2. Ca/s2 held jked  as E +. 0 

1 

V + o ( ~ ,  8) --f ( A  - 1) d as Z+ GO, 

$o = - c o s ( 8 R - ~ c o s @ o ) - ~  at  ~ = & ( g ) ,  
6Cl 

V$,(Z, 8) -+-d as z+- co. (2.15f) 

The expansion of the dimensionless dependent variables and their governing 
equations for the outer region in the C ,  problem are identical to those for the G, 
problem, except that the pressure contains a new lowest-order term : 

where it can be shown that & is a constant. The dimensionless dependent variables 
defined in the inner region are expanded in a similar manner to that in the C, 
problem : 

The major difference between the C, and C, problems in the inner region equations 
lies in the equations to solve for the pressure. It is necessary to solve for Po as well 
as p, in order to completely determine fi  and the shape of the contact line to lowest 
order. The lowest-order problem in the inner region is given by: 

(2.16) 

It is evident that Po is an absolute constant, given by: 

Po = -2 cos 8,. 
The next order problem is given by: 

(2.18) 

(2.19) 

(2.20) 

(2.22) 
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where y = /?Is. Evaluating afio/az” using (2.17), (2.18) and (2.19) gives: 

ar”o - - 2Z”cos 0, 
az“ (1  - 4 2  cos2 8,): 
- _  

Substituting (2.23) into (2.22) and integrating once with respect to x” gives 

where : 

d@ PI = - ~ y s i n ~ , c o s < ~ ~ - c ~ ~  as 
sin2QR+x-2Q, 

6 =  
4 cos 0, 

Matching the inner and outer pressures thus yields: 

vz, z, 

2ysin 8, cos 
da 

- 2s-1 p w -  
C* 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The O(1) term in (2.26) interacts with the lowest-order flow in the outer region to 
determine the shape of the contact line. The C, lowest-order outer boundary-value 
problem is identical to that for the C, problem, given by (2.15), where the potential 
along the finger shape, (2.15d), is replaced with: 

-Z atz=&(q). (2.27) 

The C, and C, problems are characterized by the differing forms of the interfacial 
potentials along the fluid interface, (2.15d) and (2.27). In the C, problem all pressure 
variations along the fluid interface from the perspective of the outer region is due to 
changes in the contact angle along the contact line. These angle variations induce 
variations in the gapwise interface shape. In  the C ,  problem, there are two terms 
contributing to the variation of pressure along the interface. The first term on the 
right-hand side of (2.27) incorporates the effect of the dynamic contact angle. The 
second term in (2.27) is the spanwise component of the curvature of the interface. In 
the G,  problem, the spanwise component of the curvature enters at O(s) ,  and thus 
does not contribute to the lowest-order contact line shape. By comparing the shapes 
of the contact line in the C ,  and C, problems, the consequence of each component of 
the interfacial curvature can be assessed. 

3. Solution procedure 
The contact line shape for the viscous finger can be found by solving (2.15) for the 

C, and C2 problems (for the C, problem, replace (2.15d) with (2.27)) using the 
technique outlined in McLean & Saffman (1981) and Vanden-Broeck (1983). Note 
that the C,  boundary-value problem reduces to their problem for the finger shape by 
setting y = 0 and 0, = ;IT (i.e. removing any variation in the gapwise curvature 
along the contact line). The power of the technique lies in transforming the two- 
dimensional free-surface problem where the domain is not known a priori to a one- 
dimensional problem. Following the notation of McLean & Saffman, the contact line 
shape can be obtained by finding q, the magnitude of the fluid speed in the direction 
parallel to the contact line, and 0, the local slope of the contact line, where: 

e = <P~-;Z. 
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logq = --Pv/;=+log(l-A) 1 VS€[O,  11, x s’-s 

1 B(s’),ds’ 
log(1-A) =- -, 

7r 

8=-$, q = O  a t s =  1, 

8=0, q = l  a t s = 0 ,  
where q is given by: 

with : 

in the C, problem, and 

do 
ds 

q = @sin(@,+FsinB) sqcos8-+cos8, 

d e  
dU ” 

p = -  x 
01= 

6C1( 1 - A )  ’ 

with : 

dB 
ds 

+wsqcos8-+cos8, 

x y sin 8, x2 

6C2( 1 - A )  ’ 
W =  K =  

12C2( 1 -A)* ’ 

(3.1 a) 

(3.1b) 

(3.1 c, d )  

(3.1 e ,  f )  

( 3 . 2 ~ )  

(3.2b) 

( 3 . 3 4  

(3.36) 

in the C, problem. Here, s is a scaled arc length ranging from 0 at the finger tail to 
1 at the finger nose. 

The above equations and boundary conditions represent a well-posed system to 
determine q and 8. Using these results, the shape of the contact line is given by: 

Z(S) = - (3.4a) 

(3.4b) 

A self-consistency check on the value of A predicted by (3.1 b)  is obtained by noting 
that ~ ( 0 )  = A. It should be noted that although ( 3 . 3 ~ )  has higher-order derivatives 
than (3.2a), the C, problem is not overspecified with the four conditions (3.1 c)-(3.1f). 
This is because there is a weak specification of the boundary conditions a t  the 
endpoints of the domain. In fact it is only necessary to specify either ( 3 . 1 ~ )  or ( 3 . 1 4 ,  
and either (3.le) or (3.lf)  for a well posed problem to arise (Weinstein 1988). 

There are two issues to be addressed in obtaining the solution. The first is whether 
reasonable contact line shapes are predicted. The second, and not totally unrelated 
issue, is whether the solutions are unique. The procedure for solving the above set of 
equations consists of specifying the value of A while ignoring ( 3 . 1 ~ )  or (3.ld).  The 
slope of the finger at  its nose can then be calculated as part of the solution to the 
problem. Whenever the condition ( 3 . 1 ~ )  is satisfied, a solution has been identified. By 
performing this calculation for all values of A within the interval A E [0,1], the subset 
of A corresponding to solutions can be identified. If this subset contains more than 
one element, then the solution is not unique. 
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More specifically, solutions for the C, problem are obtained as follows. Specify C,, 
p, 8,, and hi, the initial value of A. Calculate 01 using (3.2b). Solve for 8 and q using 
(3.1) and (3.2). When 8(1) = -in is satisfied, a solution is found. The contact line 
shape is then given by (3.4). Increment A,  and repeat the procedure again, until A is 
close to 1. For the C, problem, specify C,, y ,  OR, and A,. Calculate K ,  m, and 6 using 
(3.3b) and (2.25) and continue with the same procedure as outlined for the C, 
problem. 

In order to simplify the determination of the solution numerically, the behaviour 
of the solution is investigated analytically near the endpoints s = 0 and s = 1 so it 
can be scaled out at these locations. The variable transformation employed by 
Vanden-Broeck (1983) is found to scale out the endpoint singularities and assure 
sufficient differentiability a t  the endpoints : 

s~ = (1-6) (3.5) 

McLean & Saffman (1981) use variable transformation given by s‘ = (1 -p) ,  as 
opposed to the form given in (3.5). In their approach, this transformation assures 
differentiability at  s = 1, where a square root singularity is present. In the approach 
of Vanden-Broeck (1983), the calculated value of 8 at s = 1 determines the severity 
of the singularity at the finger nose, and it is thus necessary to increase the exponent 
of 5 to assure differentiability. The exponent 7 in (3.5) is determined from the 
asymptotic behaviour of the solution as s --f 0, following techniques presented in 
McLean & Saffman (1981). For the C, problem, it is given by: 

cot ( ~ 7 )  = apsin (0,) 7, 

cot (R7) = K672 + WT. 

(3.6) 

while for the C, problem, 7 is given by solving: 

(3.7) 

In either case, 7 E (0, t).  Thus, the singularity exponent 7 must be determined each 
time A is incremented since the parameters in (3.6) and (3.7) will change. 

The same numerical procedure outlined in Vanden-Broeck is used to solve the 
equations for the C, and C, problems. A forward difference, finite difference 
approximation is used to evaluate all derivatives, while the trapezoidal rule is used 
to evaluate the transformed form of the principal value integral ( 3 . 1 ~ ) .  Newton’s 
method is then utilized to solve the resultant set of algebraic solutions. In 
implementing Newton’s method, it is necessary to begin with a reasonable guess for 
the shape of the contact line. It is possible to start with A = 0, where all the 
discretized values of 8 equal 0 (which corrresponds to the line g = 0) ; these values 
satisfy the equations exactly. This result is used as an initial guess for the contact line 
shape at the first incremented value of A > 0. Thereafter, as A is further incremented, 
the previously converged solution is used as an initial guess for the contact line shape 
at  the new value of A. The results of the C, problem can be directly compared with 
the results of McLean & Saffman (1981) and Vanden-Broeck (1983) when 0, = in 
and ai = 0. 

Solutions were obtained for both the C, and C, problems with N = 60, N = 120, 
and N = 240 segments for a wide range of parameter choices. The N = 120 case was 
deemed accurate enough for the purposes of this work, where the calculated values 
of the slope at  the finger nose, 8(1), were accurate to 2 decimal places at  each value 
of the finger width, A. Newton’s method converged quadratically in 4-5 iterations at 
every specified value of A, provided the increment in A was not too large to cause 
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divergence (large increments made initial guesses based upon the previously 
converged solutions poor). 

4. Results 
4.1. The C, problem 

The solid line in figure 5(a)  gives typical results of the C ,  problem. The dotted line 
indicates 8(1) = -$r. Thus, the values of A corresponding to positions where the solid 
crosses the dotted line represents solutions. Figure 5 ( a )  indicates that  there exist an 
infinite continuous set of finger widths for which interface solutions can be found, 
Since the approximations used in the numerical analysis cease to be valid when 
l - h  = O ( E ) ,  it could not be verified that the continuous spectrum of solutions 
extends to h = 1. The distinguishing feature of figure 5 ( a )  is the minimum finger 
width, denoted by A,, below which no solutions exist. In figure 5 (a), A, = 0.30. The 
range of finger widths for which solutions exist in figure 5 ( a )  is thus given by 
A~[0.30,0.96].  I n  figure 5 ( b ) ,  the contact line shapes corresponding to  A, = 0.30, as 
well as h = 0.50, 0.70 and 0.90 are plotted. These are representative predictions of 
the continuous spectrum of shapes. 

A vital issue is whether the dotted line is ever reached by the numerical results in 
figure 5(a) ,  since these results never cross the line. To verify that values of A 2 A, 
actually corresponded to solutions, the problem was posed where A was calculated 
instead of specified, as was done in McLean & Saffman (1981). Initial guesses were 
varied in the numerical procedure, and indeed solutions, very close together, were 
obtained. The distance between these solutions was limited by the finite difference 
discretization ; as the number of discretizations increased, the solutions became 
closer together. It was observed that no interface solutions were found below a value 
of A of approximately 0.3, and so i t  was concluded that solutions exist for all h 2 A,. 

The behaviour of the system under different conditions can be determined by 
evaluating the dependence of A, on the three parameters p, PIC,, and 0,. We choose 
these parameters, as opposed to  C,, B, and OR, to  present the results because it 
facilitates the interpretation of a 'thought ' experiment in which the geometrical and 
material properties are held fixed, while the speed of the finger is varied. This 
formally corresponds to the case where p/C, (equivalent to (d0ldU) uE/,u) and 0, 
are fixed, while p is varied. The parameters PlC, and p can be regarded as reflecting 
the relative importance of dynamic contact angle to viscous forces, and as a 
dimensionless finger speed, respectively. The parameter p can also be interpreted as 
a dimensionless angle. When interpreted in this way, parameter values will be given 
in degrees, and when interpreted as a dimensionless speed, values will be given in 
radians. 

Recall that for a given 0, there is a physical bound on the size of p. Prom the 
linear contact angle relationship (2.1 b ) ,  i t  can be seen that in order for contact angles 
to be non-negative, p G 0,. For a fixed material system, this restriction amounts to 
an upper bound on t,he finger speed such that a contact line solution exists. However, 
this does not necessarily represent the least upper bound since the system may be 
unstable a t  this speed, resulting in the appearance of a thin film. 

Figure 6 shows the results for PIG, = 0.05 and 8, = 90' for p varying from 0.01 
to 1.50 radians (0.57' to 89.94"). Curve B in this figure is the plot of data shown in 
figure 5(a) .  It should be noted that p was not evaluated to  its upper bound of 1.57 
owing to convergence problems with Newton's method. Note that the curves for 
p = 0.1 and p = 0.01 are coincident, indicating an insensitivity of A, to p as /I-0. 
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FIQURE 5. (a) The dependence of the slope at the finger nose, 8(1), on the finger width, A,  for 
C, = 0.2, B = 0.01 and 8, = 90'. The minimum allowable finger width is A, = 0.30. (b)  Finger 
shapes corresponding to finger widths from (a), where C, = 0.2, /? = 0.01 and 8, = 90'. A : A, = 0.3; 
B :  h = 0.5; G: h = 0.7; D: h = 0.9. 

Physically, the /9+ 0 limit corresponds to the limit of small contact angle dependence 
on the contact line speed, resulting in small contact angle variations along the 
contact line. This insensivity a t  small values of /3 is expected from the form of (3 .2a) ,  
where @/C, is the only remaining parameter for a given material system as @+ 0. It 
can thus be seen in figure 6 that for a given value of p/C,, there exists a band of 
values of A, ranging from about 0.15 to about 0.30, corresponding to p values of 1.57 
and 0.01, respectively. 

Figure 7 shows the effect of varying 0, on the band given by {A, 10 < /3 < 9,) 
evaluated for PIC, = 0.5, which we will regard as the representative case. Note that 
when p x @,, for this curve, the contact angle a t  the finger nose is approximately 
zero. On the other hand when B w 0, the contact angle at the nose, and for that 
matter along the contact line, is given approximately by 0,. Another interesting 
feature to note is that as 0, is increased past approximately 160°, the values of A, 
corresponding to p 2 0 lie below those for p = 0,. This indicates that finger widths 
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FIQURE 6. The dependence of the slope at the finger nose, B ( 1 ) ,  on the finger width, A ,  for 
B /C1=0 .05and8 ,=900 .A:B= 1.5,/ \ ,=0.15;B:B=O.l or0.01,Am=0.3. 
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FIGURE 7. The dependence of the finger width, A,, on the receding contact angle, Q,, for 

PIC, = 0.5. 0, p % 0;  A, p x 8,. 

increase as the finger speed is increased, exactly the opposite behaviour to when 
/3 < 160'. When 8, = 160°, finger widths are identical for all values of /3, i.e. all fluid 
speeds; however, the finger shapes corresponding to different fluid speeds are 
different . 

4.2. The C ,  problem 

Figure 8 gives typical results for the C, problem. Every time the plot crosses the 
horizontal dotted line, a value of h corresponding to a solution is identified. Note that 
the range of finger widths for h E [0,0.5] yields no solutions and thus is not presented. 
Three values of h corresponding to solutions are indicated in figure 8. Let the smallest 
finger width be denoted by A,, the next largest denoted by A,, and the last value by 
A,. It should be noted that additional solutions appear to exist for A > 0.88, but it 
takes an increasing number of finite difference points to resolve more solutions as h 
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FIGURE 9. The dependence of the slope at the finger nose, O( i) ,  on the finger width, A,  for C, = 40 
and 8, = 90". -, y = 0, A, = 0.55, A, = 0.68, A, = 0.84; - - - - - ,  y = 2, A, = 0.57, A, = 0.70, A, = 
0.85; ----, y = 10, A, = 0.65, A, = 0.77, A, = 0.90; ---, = 20, A, = 0.71, A, = 0.83. 

approaches 1. The difference in values of successive h corresponding to the 
oscillations about the dotted line in figure 8 eventually decrease as more and more 
solutions are found, while the amplitude of the curve increases. Whether or not there 
exists an infinite discrete set of solutions for the specified parameter values has not 
been pursued ; however, based upon the data trends, one might suspect this to be the 
case. 

The results of the C,  problem are examined in $ 5  from two perspectives. One 
perspective is similar to that used in the C, problem, and consists of analysing the 
solution in terms of the parameters C,, y/C,, and 8,. Note that y/C, is identical to 
PIC,. The other perspective consists of holding G,  and 0, fixed, while varying the 
value of y (refer to figure 9). This facilitates an examination of the relative influences 
of the gapwise and spanwise curvatures (refer to (2.27)) on the viscous fingering 

FIGURE 8. The dependence of the slope at the finger nose, @(l), on the finger width, A, for y/C, = 
0.05 and 8, = 90". -, C, = 120; - - - - -  > C 2 -  - 80. , ----, C, = 40. 



72 S. J .  Weinstein, E .  B. Dussan, V .  and L. H .  Ungar 

FIGURE 10. (a) Finger shapes corrcisponding to A, values from figure 9, where C, = 40 and 0, = 

0.71. (b)  Finger shapes corresponding to A, values from figure 9, where C, = 40 and 8, = 90'. -, 

Finger shapes corresponding toh, values from figure 9, where C, = 40 and 0, = 90'. -, y = 0 ,  

9 0 0 . - - - , ~ ~ O , A ~ ~ 0 . 5 5 ~ - - - - - , ~ ~ 2 , h , ~ 0 . 5 7 ~ - - - ~ , ~ ~ 1 0 , h , ~ 0 . 6 5 ~ - - - - , ~ ~ 2 O , h ~ ~  

= 0, A, = 0.68; - - - - - ,  y = 2 ,  A,  = 0.70; ----, y = 10, A, = 0.77; ---, y = 20, A, = 0.83. (c) 

A , ~ 0 . 8 4 ~ - - - - - , ~ ~ 2 , h z ~ 0 . 8 5 ~ - - - - , ~ ~ 1 0 , A ~ ~ 0 . 9 0 .  

problem. The contact line shapes corresponding to A,, A, and A, are plotted in figures 
lO(a), (b )  and (c), respectively. 

5. Discussion and conclusions 
It is evident that  the presence of moving contact lines do not remove the 

appearance of multiple solutions from the viscous fingering problem. Although a 
rigorous mathematical demonstration will not be presented, we shall argue that the 
physically relevant solutions correspond to A, for the C, problem, and A, for the C, 
problem. Our approach consists of drawing general conclusions from specific 
examples, and from making analogies to the well-studied case when a thin film of 
liquid remains on the solid. Finally, we discuss the similarities between the new class 
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FIGURE 11. The dependence of the finger width on the slow speed variable, C2:  A, y/C, = 0.5 
and 0, = 90'. 0, y/C, = 0.05 and 0, = 90'. 

Y 4 l  4 A2 

0 0.55 0.68 0.84 
2 0.57 0.70 0.85 

10 0.65 0.77 0.90 
20 0.71 0.83 - 

TABLE 1. Solutions t o  the C, problem 

of viscons fingers observed by Kopf-Sill & Homsy, and the characteristics predicted 
by our analysis of viscous fingers possessing moving contact lines. 

We begin by examining the characteristics of the C, problem, since this corresponds 
most closely to the thin film viscous fingering problem which has been studied 
extensively by others. When y equals zero and 0, equals in, the equations describing 
the shape of the finger are identical for both problems. Our results {hi I y = 0, i = 0, 
1,2> agree with the finger widths corresponding to the three cases reported by 
Vanden-Broeck (1983) at K = 0.273. (Our K corresponds to Vanden-Broeck's K.  
Also, the agreement is to the two significant figures which he reports.) Our principal 
conjecture for the C, problem is that the physically relevant solution for positive 
values of y corresponds to the finger with the smallest width, A,. This has been shown 
to be the case when y equals zero, through favourable comparisons between 
experiment and theory and by stability considerations, as discussed in § 1.  The basis 
for this speculation of stability for values of y other than zero is that solutions for 
small values of y differ only by small amounts from the solution for y equal to zero, 
i.e. the problem does not appear to be singular at y equals zero. Figure 9 illustrates 
by way of an example the continuity of {hi I i = 0,  1,2> a t  y equals zero ; also refer t o  
table 1. Further supporting evidence lies in the similarity of the shapes of the fingers 
near the nose. For the case of A,, they are all well-rounded, regardless of the value 
of y (refer to  figure 10a). Likewise, all the other solutions, i.e. {hi I i = 1,2}, are either 
broad and flat, or undulate (refer to figures 10b and c).  Thus, if the solutions 
corresponding to {A, 1 i = 1,2} are not physically relevant for y equals zero, it  seems 
plausible that they are all not physically relevant for values of y greater than zero. 



74 

(b) 1.0 

0.5 

B 0 -  

-0.5 

S. J .  Weinstein, E .  B. Dussan, V .  and L.  H .  Ungar 

. * - 1  I 1  1 1 . 1 1  9 1  t I 1  - I 3 - 1  - 1  1 I 

- 
- - - - - - -______ --------___--_____________ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - - - - - - - - - - - -  
- 

- 1 . 0 . ~ " ~ ~ " " ~ " " ~ " " ~ " " ~ " " ~  

The complete results for two examples are given in figure 11. Note that the finger 
widths in the limit as C, -+ co depend on the values of (ecr/p) dB/dU and 0,. They are 
not approximately equal to 0.5, as in the case when thin films are present. 

We identify the physically relevant solution to the C, problem by establishing the 
following relationship between the C, and C,  problems : the limit as C,  + 00, holding 
(ea/p) dB/dU and 0, fixed, is equivalent to the limit as C, + 0, holding (ea/p) dB/dU 
and 0, fixed.t Evidence demonstrating the validity of this relationship consists of 
calculating identical slopes at  the nose of the finger for h E [0,0.96] for the C, and C, 
problems (for a particular example, refer to figures 12a and 5a) ,  and obtaining 
identical finger shapes corresponding to A, and A ,  (refer to figures 12 b and 5 b ) .  Thus, 
if A, is the physically relevant solution to the C, problem, then it seems plausible that 

f This equivalence breaks down for (w/,u) dB/dU = 0, or 0, = 0, because each implies that /3 = 
0. When p = 0, the C, problem is equivalent to the thin film viscous fingering problem posed by 
McLean & Saffman, and the C, problem is equivalent to the problem posed by Saffman & Taylor. 
It is now well known that the problem posed by McLean & Saffman is singular as C, + co. 
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FIGURE 13. The dependence of the finger width on the fast speed variable, C,, for PIC, = 0.5, 
E = 5 x and 8, = 90". A, Results of C ,  problem; 0, results of C, problem. 

A, is the physically relevant solution for the C, problem. We conjecture that A, 
represents the physically relevant solution to the C, problem for values of C, other 
than zero. A composite plot of the results of the C, and C, problems for a particular 
example is illustrated in figure 13. Thus, it is natural to  refer to C, as the 'slow' finger 
speed solution and C, as the 'fast ' finger speed solution, a t  least slow and fast relative 
to each other. Note the similarity in appearance between our figure 13 and figure 8 
in Reinelt (1987b). We are not suggesting that thin film problems can be viewed as 
moving contact line problems, in light of the remarks made a t  the beginning of $1,  
but rather that retaining only the gapwise component of the jump in pressure at the 
fluid interface caused by the variation in thickness of the deposited film along the 
finger may be sufficient a t  large values of C, ; thus, the affect of the jump in pressure 
due to the spanwise change in curvature on the finger width or the finger shape may 
not be significant. The similarity between these two figures also suggests that the 
thin film problem may be described by multiple velocity scales. 

It is of interest to note that the width of the finger appears to be sensitive to the 
dynamics of the fluid at its nose. This is evident when the influence of 0, is 
examined. When ,!3 = OR, the contact angle a t  the nose is always zero, regardless of 
the value of 0,. Figure 7 indicates that A, is relatively insensitive to 0,. On the 
other hand, when ,!3 = 0, the contact angle a t  the nose is 8,. For this case, figure 7 
indicates that A, is sensitive to 0,. This is reminiscent of experimental observations 
of the dynamics of viscous fingers with thin films. The width of these fingers have 
been shown to be sensitive to the presence of rather small bubbles or wires positioned 
at  its nose (Couder, GBrard & Rabaud 1986). 

Finally, we point out some similarities between the behaviour of viscous fingers 
with moving contact lines, and the experimental observations of Kopf-Sill & Homsy. 
Kopf-Sill & Homsy performed experiments of air displacing glycerine through a glass 
Hele-Shaw cell for different size gaps. They find what the refer to as a new class of 
solutions to the shape selection problem, characterized by rather narrow fingers in 
the limit of large values of C, (the finger widths can take on values much less than 
0.5) ,  whose finger widths vary directly with the aspect ratio of the cell, E .  It is 
interesting to note that this behaviour also characterizes our C, problem, as has 
already been discussed in the example illustrated in figure 11. 
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